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The delegation of decision-making capacity from one actor to another—known variously as authority
or control—is a central phenomenon of organizational sociology. Despite its theoretical and practical
significance, however, the dynamics of control within disrupted settings (such as disasters) remain
poorly understood. Here, we shed light on this question by a reexamination of historical data on
multiorganizational disaster response networks, using recently developed statistical methods for robust
inference from error-prone informant reports. Specifically, we test competing hypotheses about the
relationship of control during the response process to the structure of interorganizational communi-
cation. We find that both the realized and normative response hierarchies are likely shaped by coordi-
nation among both nonadjacent alters and along indirect channels. Our results suggested that the
communication structure of these networks is consistent with a control at a distance model of command.
This article makes a substantial contribution to understanding the role of network structure in
the emergence of control between organizations in disrupted settings. Additionally, our innovative
approach to network inference will guide researchers in dealing with error-prone data in their own
research on policy networks.
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Introduction

A central phenomenon of human organization is the emergence of control rela-
tions, that is, relationships in which one actor transfers his or her decision-making
capacity to another (Coleman, 1990; Weber, 1958). Indeed, it has been argued that the
existence of such relations is one of the defining characteristics of organizations per
se (see, e.g., Perrow, 1970; Porter, Lawler, & Hackman, 1975). If “organization” is (in
the words of Galbraith, 1977) “that ‘something’ which distinguishes any collection of
50 individuals in Kennedy International Airport from the 50 individuals comprising
a football team in the National Football League,” one of its core elements is clearly
the willingness of organizational members to systematically cede control to other
members of the group. Coincident with control relations between individual actors,
control of one organization over another involves the controller organization to, in
Kirsch’s (1996) words, “regulate or adjust behavior” of the controllee organization.
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While the emergence of institutionalized control relations (or authority relations)
has been a target of intensive study at least since Spencer (1874), much remains to be
learned regarding the emergence of ad hoc control over short timescales. This is
particularly true at the interorganizational level, where formal authority relation-
ships frequently overwhelm or obscure other factors (Agranoff & McGuire, 2001;
Weber, 1958). Observations of interorganizational control relations during periods of
relative stability are thus effective at revealing the structure and long-term evolution
of formal authority but are of limited use in illuminating how control relations arise
where the influence of such authority is attenuated (or altogether absent). Since the
latter condition must precede the former, understanding the structural conditions in
which ad hoc control relations arise can potentially shed light on the circumstances
in which formal authority structures initially develop. More pragmatically, ad hoc
control also acts as a “fallback” mechanism for interorganizational collaboration
within settings wherein formal authority relations are ineffective or disrupted
(Roethlisberger & Dixon, 1939). Moreover, ad hoc control facilitates task performance
and role fulfillment when formal authority is ineffective. Thus, following Agranoff
and McGuire’s (2001) question of the role power plays in interorganizational net-
works, understanding the emergence of ad hoc control relations is of both practical
and theoretical importance for the sociology of organizations.

Given the prevalence of formal authority structures in routine settings, the study
of ad hoc control is more easily conducted in nonroutine settings, such as disasters.
Sociologists have long observed that disasters disrupt existing social structures and
practices, thereby providing researchers with an opportunity to examine mecha-
nisms that are difficult to observe in everyday settings (Drabek, 1986; Quarantelli,
1987). As events disrupt daily routines, they also trigger the emergence of social
structures than deviate from routine and/or planned patterns of interaction (Drabek
& McEntire, 2002; Dynes, 1970; Quarantelli, 1996). Examination of the organizational
response to disasters thus offers a glimpse into the processes by which routine social
structure is reorganized and/or restored. In particular, a common effect of disasters
is to render temporarily ineffective the conventional lines of authority among orga-
nizations; this is particularly true in the immediate postimpact period, during which
organizations and their members must rapidly mobilize and respond within an
uncertain (and often infrastructure-degraded) environment. During this period,
individual and organizational task performance requires the flexible combination
of planning and improvization, including the creation of novel mechanisms of coor-
dination and control (Comfort, 2007; Dynes, 1994; Neal & Phillips, 1995, Waugh,
1993). By studying ad hoc control relations during the immediate postimpact period,
we thus gain the opportunity to test competing theories regarding the processes by
which such structures develop and operate.

Employing the emergent multiorganizational network (EMON) as a research
site has a rich history in organizational sociology (Drabek & McEntire, 2002;
Majchrzak, Jarvenpaa, & Hollingshead, 2007; Stallings & Quarantelli, 1985; Trainor,
2004, Waugh, 1993, Weick & Roberts, 1996). EMON has long been characterized as
a response to the breakdown in authority and communication lines entailed in
disasters (Drabek & McEntire, 2002; Tierney, Lindell, & Perry, 2001; Trainor, 2004).
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However, little is known about the structural mechanisms that facilitate command
relations in EMONs. Indeed, the ways in which organizations delegate decision-
making capacity and issue commands in the context of an emergent network repre-
sent a remarkable occlusion in the literature, given the emphasis on communication
and coordination. We shed light on that question in this article.

This article follows the strategy outlined earlier, examining emergent control
in disaster response networks to shed light on the development of ad hoc control
relations. Our data are composed of a collection of networks from seven remote-area
search and rescue operations from late twentieth century disasters in the United
States, collected by Drabek, Tamminga, Kilijanek, and Adams (1981). To borrow a
term from Provan, Fish, and Sydow (2007), we take a “whole network” approach by
utilizing the Drabek studies at the network level of analysis. By doing so, we empha-
size the contributions of each individual organization only as they relate to the
overall process by which control mechanisms arise (Provan et al., 2007; Provan &
Milward, 1991). Employing recently developed methods for analysis of error-prone
network data within a Bayesian framework, we evaluate the relationship between the
structure of interorganizational communication and organizations’ prominence in
the control structure (as evaluated by organizational informants). This relationship,
in turn, is used to assess several theories regarding the process by which ad hoc
control operates. Thus, we also make a methodological contribution by taking an
analytic approach that bridges what Zaheer and Soda (2009) call “the structure of
outcomes” with the “outcomes of structure.” We used a novel model to infer the
structure of communication in EMONs. We then used those networks to model how
authority relations arise within the structure. This approach is general enough for
many applications where ties are drawn based on informant accounts and there is
uncertainty about the underlying network. Our analyses suggest that control in these
networks involved both direct interaction and use of indirect contacts. As we argue
later, this finding is of both theoretical and practical import.

Command, Control, and Authority in Disaster Response

Organizational practices employed in response to disasters and other extreme
events fall broadly under the rubric of emergency management (Auf der Heide, 1989).
The normative structure of emergency management in the United States (and the
developed nations more generally) is based on a bureaucratic model, whereby
response activities among a relatively decentralized collection of agents are coordi-
nated through a centralized decision-making apparatus (Schneider, 1992; Takeda &
Helms, 2006). The exercise of authority occurs “downwards” through the structure,
with each agent answerable in principle to a single superordinate agent (a principle
known as unity of command). As with most other modern organizations, authority
relations within response organizations allocate power on a positional rather
than a personal basis (Uhr & Fredholm, 2006; Weber, 1958). The design of these
relations—and their effective use to coordinate activities during the response
process (Comfort & Kapucu, 2006)—constitutes a family of tasks known collec-
tively as command and control problems. Given that disasters typically involve rapid
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deployment of multiple units from disparate locations in a turbulent environment,
it is perhaps unsurprising that effective command and control has been argued to
be a core challenge for emergency management policy (Comfort, 2007; Iannella &
Henricksen, 2007).

In principle, command and control problems may be solved by a combination of
a priori policies and standard operating procedures. Unfortunately, however, the
heterogeneous and often unpredictable environments encountered during disasters
can dramatically limit the effectiveness of such systems, as Weick (1993) observed
during the Mann Gulch fire. Where conventional structures and routines no longer
suffice, novel (or, as we have used the term earlier, ad hoc) arrangements must be
developed in response to changing circumstances (Mendonca, Beroggi, & Wallace,
2001; Webb, 2004). Failure to establish effective ad hoc control structures under such
conditions can lead to conflict between organizations (e.g., due to task interference),
failure to complete critical objectives (e.g., due to vital tasks being overlooked or
unassigned), inefficiency (e.g., due to repeated performance of the same tasks by
multiple actors), or other problems (e.g., underutilization of available personnel).
Unfortunately, this process is made difficult by the limitations of interorganizational
communication during disasters, differences in mission and procedures across orga-
nizations, and the short timescales within which solutions must be implemented.
The development of ad hoc control structures is thus a form of “collective improviza-
tion” in which simultaneous adjustments by multiple actors within a heterogeneous
environment converge to a solution that is beyond the capacity of any one actor to
completely anticipate or determine.

The presence of explicitly articulated command and control concepts in disaster
response within the United States may be tied back to the origins of emergency
management as a distinct field of organizational practice. Prior to the creation of the
Federal Emergency Management Agency in 1979 under Executive Order 12127, U.S.
civil disaster response was situated largely within the Department of Defense, with
additional support distributed across the Department of Commerce and the Depart-
ment of Housing and Urban Development. Much of the emergency preparedness
capability in the United States prior to this event stemmed from post-World War II
civil defense programs. Following several devastating disasters in the mid-twentieth
century (Hurricanes Carla, Betsy, and Camille; the Alaska earthquake in 1964; and
the San Fernando earthquake in 1971), the U.S. government identified the need for a
new independent civil agency to prepare and respond to natural hazards (Nicholson,
2003).

In contemporary emergency management, the influence of civil defense and
military rigor are still apparent as former military personnel find civilian positions
in paramilitary organizations, such as fire and police, and emergency management
(Brooks, 2005; Nicholson, 2003). As neo-institutionalist theories would predict
(DiMaggio & Powell, 1983), this exchange has promoted a certain degree of isomor-
phism between organizations in the military and emergency management fields.
Among the practices to have diffused from the former to the latter field is a tend-
ency for emergency response plans to be founded on a core model of hierarchical
communication and coordination structures, regulated by a central authority. This
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hierarchical model is intended to direct actions to lower level actors based on
decisions made by high-level actors, with the latter basing their decisions in part on
information passed “up the chain” from units in the field. Such systems can have
numerous benefits in terms of efficiency (Bavelas, 1950) and robustness to loss
of noncentral units (Carley, 1992), but these benefits come at the cost of increased
dependence on core units, and a rise in delays and errors stemming from the need to
transmit critical information through multiple intervening parties in order to arrive
at a decision (Drabek, 1985). The limitations of centralized solutions to command and
control problems during disaster response have led some researchers (e.g., Dynes,
2003; Neal & Phillips, 1995; Wenger, Quarantelli, & Dynes, 1990) to call for increased
use of decentralized decision making structures; the tension between the flexibility
and low latency of local autonomy versus the efficiency and global robustness of
centralized control is a core issue in the debate over how response operations should
be structured.

Communication Network Structure and Control

Explicitly structural concepts such as kinship ties, resource flows (Phillips,
Garza, & Neal, 1994), roles (Kreps, 1987, 1989; Kreps & Bosworth, 1993, 1994, 1997),
and emergent behavior have been utilized by disaster researchers for several decades
(Quarantelli, 1984, 1996; Stallings & Quarantelli, 1985); however, relatively few quan-
titative studies of communication or control structures appear in the early literature
of the field. Following the 1976 Big Thompson River flood, Thomas Drabek began to
study the relationships of interagency coordination and relationships (Drabek, 1985,
2002). In the disasters that followed (the Wichita Falls tornado in 1979, Hurricane
Frederic in 1979, and Mount St. Helens in 1980), Drabek (2002) asserted that the
measures then used to assess complex social phenomena arising in the aftermath of
these events were woefully inadequate. Subsequently, Drabek and his colleagues
conducted several studies that aimed to map the social relations of the multiorgani-
zational networks that emerged among disaster response organizations (Drabek,
1985, 2002; Drabek et al., 1981; Gillespie & Colignon, 1993; Gillespie, Sherraden,
Streeter, & Zakour, 1986). Following this line of research, Drabek (1987) argued that
disaster response activities at the interorganizational level can be characterized via
EMONs—the structured patterns of relationships among organizations collaborat-
ing during the response process.

In 1978, Drabek began collecting data on EMONs resulting from remote-area
search and rescue (SAR) operations mounted in response to seven different natural
and anthropogenic disasters. The intent was “to prepare a set of case studies in which
the multiorganizational responses could be documented” (Drabek, 1983, p. 279).
Several studies focused on specific events and provide preliminary analyses (Adams,
Drabek, Kilijanek, & Tamminga, 1980; Kilijanek, Drabek, Tamminga, & Adams, 1979;
Tamminga, Drabek, Kilijanek, & Adams, 1979). These provide additional insights
into local events, such as the July 1979 tornado that struck Cheyenne, WY (Drabek,
Tamminga, Kilijanek, & Adams, 1982). The accumulated results of these studies were
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published by Drabek et al. (1981) and constitute the largest single collection of
response operations with systematically collected and directly comparable network
data to date.

The diversity of the events covered by Drabek et al. (1981)—flash floods in Texas;
tornadoes in Lake Pomona (KS), Wichita Falls (TX), and Cheyenne (WY); Hurricane
Frederic in Jackson County (MS); the eruption of Mount St. Helens (WA); and the
report of a lost hiker on Mount Si (WA)—enable the comparison of EMON structures
across context. The researchers collected data on each event in a systematic and
consistent manner. While the dyadic relational information reported by in this work
is limited to interorganizational communication, the authors also provide informa-
tion regarding the extent to which each organization was judged by other network
members to play a central role in decision-making and control activities during the
initial response (Drabek et al., 1981). This information potentially makes it possible
to test a number of competing hypotheses regarding the mechanisms of control
employed during the early phases of each event by relating each organization’s
observed role in the control structure to the communication, which would be needed
to obtain that role given the assumed control mechanism. We follow that strategy
here.

We draw from past research and social theory to provide insight on how the
realized network structure of interorganizational communication might generate
control relations. Control relations are related to positions of centrality in net-
works, which have a long history of study in organizational science and in soci-
ology, more generally (Bonacich, 1987; Freeman, 1979; Ibarra, 1993). Prima facie, we
would expect that organizations that communicate with a lot of other organiza-
tions to play central roles in delegating authority and exerting control over the
whole network. Tsai (2002) found that organizations with more ties tended to
share knowledge more frequently in his study of 24 business units in a large pet-
rochemical firm; however, the more direct control exerted by the headquarters on
its subunits, the less frequently the subunits shared knowledge. This suggests that
direct control, insofar that it is related to the number of ties an organization has,
may hinder the communication flow in the whole network, dampening the efficacy
of delegating authority.

An accumulation of direct ties alone may not give rise to control relations.
Rather, organizations that occupy structurally advantageous positions, such as
brokers, may be the key to the flow of authority over an interorganizational network.
Brokers, as gatekeepers of information and resources between two otherwise non-
adjacent actors, may gain authority over the actors they stand between (Burt, 1992,
2005; Gould & Fernandez, 1989). Additionally, Granovetter’s (1973) famous “weak
ties” propositions lead us to expect that indirect ties channel control relations broadly
across the network. This is a reasonable expectation in our case because emergent
interorganizational disaster response networks tend to have sparse features (Butts,
Petrescu-Prahova, & Cross, 2007; Lind, Tirado, Butts, & Petrescu-Prahova, 2008),
which means that not all organizations are directly tied to the central players (Bevc,
2010). In the following section, we spell out these arguments as a set of competing
and complementary hypotheses.

Marcum/Bevc/Butts: Control in Interorganizational Networks 521



Hypotheses. In this section, we describe our hypotheses about the relationship
between communication network structure and the emergence of ad hoc control
relations. We begin by briefly summarizing the theoretical argument outlined
earlier. As we have suggested, realization of control during nonroutine conditions
creates a concomitant communicative burden. Trivially, one actor cannot transfer
control of his or her actions to another unless he or she has some mechanism
for receiving direction from the superordinate alter. Likewise, effective control
of a subordinate alter may be impossible unless ego is able to obtain information
about the alter’s current status and environment. Thus, the communication
network must permit some communication between superordinate and subor-
dinate actors for control to be realized. Where the amount of information to be
conveyed is minimal, communication may be indirect, that is, actors may pass mes-
sages to one another through third parties. Since such mediation is likely to induce
both delays and errors, however, control may be easier to maintain when messages
are relayed through as few third parties as possible (and when multiple, redundant
channels are available for message exchange). When the need for rapid information
exchange is substantial, moreover, any degree of indirect communication is
unlikely to prove sufficient for effective control. In such circumstances, direct ties
between superordinate and subordinate actors may be required for control to be
realized. By turns, it is reasonable to expect that the demand for control is itself
partially dependent upon communication: two actors who are in direct contact can
potentially resolve conflicts among themselves, while actors without such contacts
may be expected to benefit from management by a third party that is mutually
accessible to both (i.e., a broker [Gould & Fernandez, 1989] or a least upper bound
[Krackhardt, 1994]).

Figure 1 presents an illustrative summary of how our proposed mecha-
nisms relate to opportunities for communication. The solid lines connecting source

Figure 1. Three Basic Mechanisms for Control Exercise within Communication Networks.
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organizations to their targets represent communication channels (i.e., interorganiza-
tional ties over which communication may take place). The dotted lines represented
hypothetical directives sent from source organizations to targets through the com-
munication network. Since the transfer of decision-making capacity from target to
source requires (at minimum) the flow of imperative information from source to
target, structures of the forms shown here constitute necessary preconditions for the
mechanisms of direct, brokered, and indirect control (respectively). Organizations
satisfying these preconditions with respect to a larger set of potential targets have
(ceteris paribus) a wider range of control opportunities and are predicted to exercise
greater control in practice than organizations with fewer such opportunities. By
comparing each organization’s structural opportunities for direct, brokered, and
indirect control (as revealed by the communication network) with that organiza-
tion’s observed level of control exercise, we can thus infer the extent to which
each mechanism is active within a given network. This leads immediately to three
basic hypotheses regarding control activities within undirected interorganizational
communication networks:

Hypothesis 1 (direct control): The extent of control exercised by any given organi-
zation will be positively related to the number of other organizations to which it is
directly tied.

Hypothesis 2 (indirect control): The extent of control exercised by any given orga-
nization will be positively related to the number of other organizations to which it
is indirectly tied via redundant, short paths.

Hypothesis 3 (brokerage): The extent of control exercised by any given organization
will be positively related to the number of pairs of organizations to which it is
directly tied and which are not directly tied to one another.

Clearly, these hypotheses are not exclusive of one another: for instance, organi-
zations with many direct ties will by definition be tied to many alters via short
communication paths (though it is possible to obtain the latter state without the
former). For this reason, we describe hypotheses 1–3 as inclusive hypotheses—they
constitute assertions regarding communication and control which follow from, but
do not uniquely identify, the putative underlying mechanisms. To better narrow the
field of possible options, we also posit a set of exclusive hypotheses that specify
the cases in which only direct, indirect, brokered, or suitable combinations of these
effects are present.

Hypothesis 4 (direct control only): Hypothesis 1 holds, and the extent of control
exercised by any given organization does not increase with indirect ties or brokerage
after conditioning on the number of direct ties.

Hypothesis 5 (indirect control without brokerage): Hypothesis 2 holds, and the
extent of control exercised by any given organization does not increase with bro-
kerage after conditioning on the number of organizations to which it is tied via
redundant, short paths.
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Hypothesis 6 (brokerage only): Hypothesis 3 holds, and the extent of control exer-
cised by any given organization does not increase with direct or indirect ties after
conditioning on the number of brokerage relationships.

Hypothesis 7 (brokerage and direct control only): Hypotheses 1 and 3 hold, and the
extent of control exercised by any given organization does not increase with indirect
ties after conditioning on the number of direct ties and brokerage relationships.

Hypothesis 8 (all mechanisms): Hypotheses 1–3 hold, and none of hypotheses 4–7
hold.

To summarize, if direct contact enhances opportunities for control, then hypoth-
esis 1 should be found to hold within realized disaster EMONs. If indirect contact
and/or brokerage enhance control, then hypotheses 2 and 3 (respectively) should be
supported. If the communicative demands of effective control are so strong that only
direct communication will suffice—and if demand effects for mediation are inactive,
then hypotheses 1 and 4 will be supported; alternately, direct contact with appre-
ciable brokerage demands would lead to the combination of hypotheses 1, 3, and 7.
Brokerage demands alone should produce observations satisfying hypotheses 3 and
6, but the correlation between brokered pairs and direct ties may lead to a spurious
observation of hypothesis 1 as well. Similarly, the use of mediated communica-
tion will clearly produce support for hypothesis 2, with hypothesis 1 arising as a
by-product: if messages can be relayed, they can also be passed directly, and hence,
our putative mechanism does not predict a case in which indirect ties are predictive
without a direct tie effect. Nevertheless, it is entirely possible for indirect commu-
nication to be important without the presence of brokerage demands, in which case
we expect to observe hypotheses 1, 2, and 5. Finally, it is conceivable that all mecha-
nisms discussed here (direct communication, indirect communication, and broker-
age demands) are in play. In this case, we would observe support for hypotheses 1–3,
without observing support for hypotheses 4–7, a possibility we designate as hypo-
thesis 8. While these hypotheses do not exhaust the set of possible alternatives (e.g.,
the case of hypothesis 2 without hypothesis 1 noted earlier), they do describe the set
of alternatives that are plausible given the system under study.

To assess the previous hypotheses on observed EMON data, it is of course
necessary to more precisely define what is meant by “direct” and “indirect” ties, as
well as “brokerage.” Here, we employ familiar concepts from social network analysis
(degree, eigenvector centrality, and Gould–Fernandez brokerage scores) to measure
these features of the communication network. Our measures of control are composed
of the command and decision rank score variables constructed by Drabek et al. from
informant assessments of organizational activities during the initial response period.
We now turn to a consideration of these measures (and related methodological issues).

Data and Methods

As indicated earlier, our data were drawn from Drabek et al.’s (1981) study of
interorganizational networks arising from seven events occurring between 1978 and
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1980. All events involved remote-area SAR operations but varied considerably by
scale and location. Drabek et al. interviewed managers from participating organiza-
tions shortly after each event, but before response efforts were completed; in addi-
tion, they collected self-administered surveys from managers of all organizations
believed to be involved in the response. The data derived in each case can thus be
considered a complete census of responding organizations (in the sense of Wasser-
man & Faust, 1994). Responses were collected from 137 organizations. The informa-
tion collected on the networks included communication interactions between
organizations, which provides the basis for our independent variable (i.e., the
network). Importantly, Drabek et al. validated their coding of the networks both
internally, through traditional diagnostics, and externally, by soliciting feedback on
the networks from informants who were present at the disaster sites and involved in
the responses. We improved upon this confirmation with our network inference
model (as described later).

Although historical, the Drabek et al. study was precedent setting insofar as it was
the first comparative, quantitative research on disaster response networks, and it
remains the largest collection of response network data collected using standardized
(i.e., cross-case comparable) methodology. Indeed, collecting new data from this
domain was costly, difficult (Stallings, 2003)—and sometimes, dangerous as applied
demographer Swanson learned (Henderson et al., 2009)—time-consuming, and
authorities have been quick to deny access to organizational informants and primary
resources (Tierney, 2006). Thus, the Drabek et al. data set is a valuable resource to the
field of policy networks as new data are scarce even as disaster response networks have
grown. Moreover, the additional information on organizational activities captured by
Drabek et al. allowed us to examine mechanisms of command and control which
cannot be studied using more recent data sets. On the other hand, innovations in
network analytic methods also permitted more extensive investigation of the Drabek
et al. data than was possible when the data were first collected. As such, we were here
able to leverage new methods to obtain new answers from a classic data set.1

Network Data

Each of the seven networks in the Drabek et al. data set is recorded as a valued
directed graph (digraph), where an edge from organization i to organization j indi-
cates the extent of communication from i to j as judged by an informant from
organization i. The values of the edges were determined by asking informants (here,
organizational managers) the following question regarding communication during
the response period:

During this time period, how often was there direct communication between
your organization and each of the other organizations that you knew was
involved in some aspect of the SAR activity?

• 1 = continuously

• 2 = about once per hour
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• 3 = every few hours

• 4 = about once a day or less

• no communication.

For purposes of the present study, the extent of communication was of less
importance than the possibility of control afforded by such ties; moreover, informants’
ability to reliably determine frequency of communication (versus whether some
communication occurred) is somewhat questionable. For these reasons, we dicho-
tomized all edge reports at level 4 (i.e., separating those dyads with some com-
munication from those with no communication) prior to further analysis. After
dichotomization, then, ties in the resulting networks represent any communication
between organization i and organization j.

Although recorded as a digraph, it should be noted that the underlying relation
in the Drabek et al. networks (direct communication between organizations) is, in
fact, undirected; the data are thus not a true digraph (in which edges reflect direc-
tional relations from a sender to a receiver) but a simple graph (in which edges
reflect mutual relations) with two observations per edge. Such a data structure can be
thought of as an extremely local component of a cognitive social structure (CSS)
design (Krackhardt, 1987) in which (to use the terminology of Butts, 2008) own-tie
reports are obtained from each actor. In contrast to many designs, the one used by
Drabek et al. thus provides a small amount of redundant information regarding
communication ties. While this information is far less than would be present in a full
CSS design, it nevertheless is sufficient to permit some treatment of measurement
error using the network inference methods of Butts (2003).

Any data arising from field research are susceptible to errors either in recording
or informant accounts; disasters, however, are especially challenging because of the
higher level of situational uncertainty in these settings than in routine contexts.
Pragmatically, errors in the present case may be divided into two types: false posi-
tives (i.e., an informant reports that two organizations communicated when no
communication was present) and false negatives (i.e., an informant fails to report
communication that actually occurred). While knowledge of informant error rates
is limited, it is reasonable to expect (following Butts, 2003; Freeman, Romney, &
Freeman, 1987) that errors within this setting will occur more often from forgetting
and lack of knowledge regarding realized communications than from false reports of
communications which did not occur. Using Bayesian methods, we make use of this
prior knowledge to supplement information on accuracy, which can be gleaned from
the datum itself; these methods simultaneously allow us to infer the underlying
communication structure in a way that accounts for reporting error. This is discussed
in more detail in the Network Inference section.

Derived Measures. To evaluate hypotheses 1–8, we required formal notions of
direct communication partners; communication partners reachable via redun-
dant, short paths; and communication partners for whom ego serves as a bridge
or broker. These quantities are neatly captured by three widely used notions of

526 Policy Studies Journal, 40:3



centrality (Wasserman & Faust, 1994) within the social network literature. Trivially,
the number of direct communication partners for a given organization corresponds
to its degree in the underlying communication network. The capacity to reach many
other organizations via numerous short paths is well-expressed by eigenvector
centrality (Bonacich, 1972), and the number of pairs of otherwise nonadjacent orga-
nizations with which an organization communicates corresponds to the total
brokerage score of Gould and Fernandez (1989). These three indices, then, were used
as our measures of direct contact, indirect contact, and brokerage for the analyses
that follow (all network statistics were computed using the sna package for R;
Butts, 2008).

Command and Control Data

The Drabek et al. data set contains two organization-level variables, command
rank and decision rank, which assess the involvement of each organization in
command and control activities during the response. Both variables are constructed
from responses to questions asked of organizational informants during field inter-
views. Informants were shown a list of the organizations involved in the response
(collected a priori) and were asked the following:

1. Command rank: “If there was an overall chain of command overseeing activities
in the area where search-and-rescue operations were carried on, rank in order up
to six organizations that were at the top of the chain of command. More than one
organization may receive the same ranking. If there were less than six, name only
those in the chain of command.”

2. Decision making rank: “Thinking in terms of the major decisions affecting the
overall search and rescue operation, rank in order the organizations that made the
key decisions. If several were equally important, rank them equally.”

The decision rank and command rank questions were closed-ended insofar as
the informants were limited to choosing, at most, six organizations from the initial
response; any organizations that were involved in the response but not on the list
(i.e., during a subsequent phase) were coded as “unrated.”

We argued that command rank serves as a measure of the authority structure
of the response, while the decision-making rank is a measure of (potential ad hoc)
control. That is, command rank highlights organizations identified as occupying
relatively solidified command roles within the response, while decision-making
rank captures the realized exercise of control per se. As might be expected, Drabek
et al. (1981) found that both variables were highly correlated (R = 0.93) and, further,
that perceptions of who was in command correlated highly with normative expec-
tations (i.e., from response plans). The high correlation, however, is not sufficient to
conclude that these tap into the same control process—and we agree with Drabek
that they are unique measures and worthy of unique treatment. Although Drabek
et al. (1981) did not provide the raw dyadic rankings, they did supply the aggregated
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ranks for each organization, standardized with a simple weighting procedure that
allows the ranks to be compared from event to event.2 We employ these measures in
our analyses.

As noted earlier, a number of the organizations in each network were unrated
on one or both of command rank and decision-making rank. Drabek et al. effec-
tively treated these as having ranks of 0 in their data analyses. Command rank was
unrated for 37/134 or 28 percent of the organizations and decision making rank
was unrated for 35/134 or 26 percent of the organizations. Since unrated organi-
zations were excluded due to nonparticipation in the initial phase of the response,
one can correctly argue that they should have minimal command and decision-
making rank. However, our hypotheses as articulated in hypotheses 1–8 pertain to
the roles of organizations that are, in fact, present and active in the response; we do
not make predictions for organizations that are not present. For this reason, we
considered all unrated organizations to be missing for purposes of command and
decision-making rank scores and excluded them from all relevant analyses. Given
that unrated organizations were inactive during the initial phase of interaction, we
also calculated network measures only for the induced subgraph of rated organi-
zations. All informants’ reports are useful for purposes of error estimation,
however, and reports from unrated organizations were hence included when con-
ducting network inference.

Analysis

We employed Bayesian methods to assess our research hypotheses. Our proce-
dure is outlined as follows (and explained in detail in the Appendix). First, we
employed a network inference model to take a sample of five hundred draws from
the posterior distribution of each communication network, drawing on past research
regarding EMON structure and reporting errors to set the necessary priors. Collec-
tively, the posterior communication networks draws then represent the likelihood of
ties between organizations, given the distributions of the false positive and false
negative reporting errors. We used these posterior draws to estimate informant error
rates and to compute the joint posterior distributions of degree, eigenvector, and
brokerage scores for organizations within each network. Thus, the network inference
model allowed us to account for informant discrepancies in the network in a prin-
cipled manner. That is, the network inference model accounted for error in our data
arising from discrepancies between informant accounts of the communication rela-
tionships between respective organizations.

The resulting marginalized posterior distributions of each communication
network were the data used in our statistical analysis. To evaluate hypotheses 1–3, we
then calculated the posterior predictive distributions for the respective correlations
of the command and decision rank with each of the three centrality scores; these
were aggregated by sign (e.g., by negative or positive value) to yield the marginal
posterior predictive probability that each hypothesis holds for each EMON. To
evaluate hypotheses 4–8, we conducted linear regression of the command and deci-
sion rank on the matrix of centrality scores from each posterior draw. The resulting
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joint distribution of coefficients (together with the marginal correlations previously
computed) was then employed to calculate the marginal posterior predictive prob-
ability for each of the last five hypotheses on each EMON. Thus, to satisfy a particu-
lar test, the probability of a positive correlation coefficient was calculated from the
marginal correlations (a gross estimate) for hypotheses 1–3 or the probability of
a positive correlation, net of competing factors and given some conditionals, for
hypotheses 4–8.

In comparison with older methods, this scheme has several advantages. First, it
allows us to draw conclusions regarding the control/communication relationship in
each EMON, which are appropriately adjusted for our uncertainty regarding the true
network. Second, we are interested in estimating the probability each of our hypoth-
eses holds rather than frequentist alternatives such as p values (which suffer from
a range of both conceptual and practical problems; Robert, 1994). The Bayesian
approach provides these answers. Third, rather, we are interested in the signs of the
(ceteris paribus) network structure coefficients rather than their order or size. Thus,
simple robust regression of the dependent variables on the matrix of posterior
network statistics is sufficient to test our hypotheses and we can avoid the compli-
cations of endogeneity, model degeneracy, and other issues that may arise from
alternative approaches (i.e., exponential random graph models). Finally, our
approach does not depend upon asymptotic arguments (e.g., the central limit
theorem) for its justification, which is a significant concern given the small sizes of
the EMONs being studied. For readers unfamiliar with Bayesian data analysis, an
accessible introduction is provided by Gelman, Carlin, Stern, and Rubin (1995).

Network Inference. To evaluate our research hypotheses, we must first infer the seven
communication networks on which they depend. To this end, we draw from the joint
posterior distribution of each network using a network inference model from the
family derived by Butts in his 2003 Social Networks methods piece. Specifically, we
employ a pooled error model with a Bernoulli graph prior; due to the limited
quantity of data from each informant, estimation of informant-specific error rates
is not possible here (because not all informants reported on all organizations
in each disaster). Our approach improves upon the mutual agreement methods of
verifying ties because we are able to incorporate error stemming from both false
positive and false negative reports of ties whereas prior methods could not. A total
of five hundred posterior draws were taken using a Gibbs sampler with five inde-
pendent chains, and a burn-in of five hundred iterations (convergence was checked
using the potential scale reduction measure of Gelman & Rubin, 1992).3

Priors for the network inference model were selected to be weakly informative,
per the guidelines in Butts (2003). The graph prior employed for each communi-
cation network is a homogeneous Bernoulli graph with expected mean degree
approximately equal to the mean degrees of organizations from the two Hurricane
Katrina EMONs recently studied by Lind et al. (2008). The latter networks are of
similar size and general composition to those of the Drabek et al. data, suggesting
them as a reasonable starting point; employing a mean degree parameterization
allowed us to avoid biases due to differences in network size. Error rate priors were
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set to be diffuse Beta distributions, with most mass below the 0.5 mark. Priors were
chosen to essentially prohibit perverse inferences (prior probability of less then
0.0001) since these cannot plausibly arise within the pooled data context. Prior mean
error rates were chosen to be similar to the rates estimated by Butts (2003) for the
advice network of Krackhardt (1987). The latter case involves communication about
pragmatic matters in an organizational setting and (while not an exact parallel)
provides the best currently available basis for setting error rate priors in this instance.

The result of the network inference model fit is a sample from the joint distri-
bution of the communication network and associated error rate parameters for each
event. As described earlier, we employed these draws to obtain the corresponding
posterior distribution of centrality scores for each organization. These scores were, in
turn, associated with the command and decision rank scores of Drabek et al. using
correlations and robust linear regressions to obtain the posterior predictive distri-
butions of correlations/partial correlations needed for hypothesis testing. A more
detailed, technical summary of these procedures is provided in the included
Appendix.

Results

Figure 2 displays the marginalized posterior network draws for each of the
seven Drabek et al. EMONs. The vertices in this figure are scaled by expected
degree—thus, organizations believed to have more communication partners appear
larger in the display. The edges in this figure are shaded by likelihood, with more
probable ties being darker. As explained earlier, these posterior network draws are

Cheyenne Hurricane Frederic Lake Pomona Mt. Si

Mt. St. Helens Texas Hill Country Wichita Falls

Figure 2. Posterior Communication Networks of Seven Disasters Investigated by Drabek et al. (1981).
The Vertices (Organizations) Are Scaled by Their Expected Degree and the Ties Are Shaded
Proportionally to Their Likelihood, with Darker Lines Indicating Higher Probability of a Tie

between Two Nodes.
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the “data” used in the statistical analyses that evaluate our hypotheses. Table 1
presents the network size and the average posterior density with 95 percent prob-
ability intervals. Smaller networks tend to be more dense, which is consistent with
the idea that mean degree is relatively stable across events. The probability intervals
of the mean posterior network density are very narrow, indicating that the posterior
draws have relatively compact distributions.

Along with the networks themselves, we can also examine the posterior mar-
ginals of the associated error rate parameters. We expected that the posterior false
negative rates would be, on average, higher than the posterior false positive rates.
This was true for all but disaster 3, the Lake Pomona, KS, Tornado. Figures 3 and 4
show density plots of the posterior marginals for error probabilities by network. It is
immediately apparent from these plots that the error rates are relatively high for
some networks; in particular, disaster 4 has a fairly high false negative error rate
distribution compared with others in this sample (minimum = 0.266, median = 0.489,
maximum = 0.697). This case is unusual in that it involves not a disaster response per
se but the search for a lone hiker reported to have gone missing on Mt. Si in
Washington State. Many organizations that reported to the scene were not fully
engaged in the search process, which may have led some informants to underesti-
mate the extent of communication activity within the response network.

Turning to our research hypotheses, we first consider the inclusive hypotheses
1–3. Respectively, these assess the extent to which each EMON shows the structural
signals compatible with control via direct interaction (hypothesis 1), indirect inter-
action (hypothesis 2), or brokerage (hypothesis 3). Operationally, we define a struc-
ture as satisfying one of these hypotheses for the command or decision rank measure
if the corresponding structural index (degree, eigenvector centrality, or total broker-
age) is positively correlated with the rank measure in question. Table 2 shows
the marginal posterior predictives for the truth of hypotheses 1–3 on each EMON
structure; the number in the i, j cell of this table can be interpreted directly as the
marginal probability that the hypothesis of row i holds for the network of column j
(given the data and modeling assumptions). For example, the value in the first
row and first column of results for command rank in Table 2 is 0.97, which is the
probability that the number of direct ties is positively correlated with command
rank in the interorganizational communication network during the response to the
Cheyenne, Wyoming, Tornado of 1979. As is evident from Table 2, all of the inclusive

Table 1. Summary Statistics for Posterior Draws

Network
size

Network
density

2.5%
Lower PI

97.5%
Upper PI

Cheyenne, WY, tornado—1979 14 0.4426 0.4385 0.4468
Jackson County, MS, Hurricane Frederic—1979 21 0.2953 0.2927 0.2978
Lake Pomona, KS, tornado—1978 20 0.3279 0.3249 0.3309
Mt. Si, WA, remote search and rescue—1978 13 0.4565 0.4519 0.4610
Mount St. Helens eruption, WA—1980 27 0.2180 0.2162 0.2198
Texas Hill Country flood—1978 25 0.2521 0.2500 0.2542
Wichita Falls, TX, tornado—1979 20 0.3206 0.3177 0.3235

PI, probability interval.
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hypotheses are inferred to hold with very high probability for nearly all cases (the
lone exception being the brokerage hypothesis for decision rank on the Wichita Falls
EMON). This tells us immediately that the Drabek et al. EMONs display the basic
structural signatures of direct interaction, indirect interaction, and brokerage-based
interaction for both authority and ad hoc decision making. While this does not
guarantee that all three are in active use, it gives us reason to proceed with an
examination of hypotheses 4–8.

Hypotheses 4–8 all combine logical dependencies on one or more of hypotheses
1–3 with additional conditions relating to the conditional effect of one or more
structural indices controlling for other factors. Here, we operationalize this in terms
of partial correlations (implemented in practice via the distribution of coefficients for
a regression of command or decision rank on the three structural indicators). For
instance, a given posterior draw satisfies hypothesis 4 if the correlation between the
appropriate rank score and degree is positive and if the coefficients for eigenvector
centrality and brokerage-given degree are less than or equal to zero. Taking the mean
fraction of draws simultaneously satisfying this condition yields the posterior pre-
dictive probability that hypothesis 4 holds. Table 3 provides the marginal posterior
predictives for hypotheses 4–8 and can be read in the same manner as Table 2. It is
immediately evident that the probabilities here are much lower than those of Table 2,
a fact that arises naturally from the more restrictive nature of these hypotheses (and,
relatedly, the larger number of viable alternatives).4
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Figure 3. Marginal Posterior Distribution of False Negative Rates, by Network.
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Considering Table 3, the most salient observation is almost surely the clear
rejection of hypotheses 6 (brokerage only) and 8 (all mechanisms) for both authority
and ad hoc decision making. These hypotheses have an extremely low probability
of being true in any of the seven networks, indicating that neither the action of
brokerage in and of itself nor the combination of all three mechanisms provide a
satisfactory account of the Drabek et al. data. This strongly suggests that some other
factor is involved. On the question of which factor, the data are rather more equivocal:
some networks show substantial probability mass on a single hypothesis (e.g.,
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Figure 4. Marginal Posterior Distribution of False Positive Rates, by Network.

Table 2. Marginal Posterior Predictives for Hypotheses 1–3

1 2 3 4 5 6 7

Command rank
Hypothesis 1 (direct) 0.97 0.95 0.95 0.92 0.98 0.95 0.92
Hypothesis 2 (indirect) 0.96 0.95 0.94 0.92 0.98 0.93 0.94
Hypothesis 3 (brokerage) 0.96 0.91 0.92 0.85 0.97 0.96 0.84

Decision rank
Hypothesis 1 (direct) 0.98 0.92 0.94 0.91 0.97 1.00 0.78
Hypothesis 2 (indirect) 0.98 0.93 0.93 0.91 0.97 0.99 0.85
Hypothesis 3 (brokerage) 0.97 0.84 0.92 0.86 0.95 1.00 0.56

The values of each cell in the table report the marginalized probability
that the respective hypothesis holds in each of the seven disasters.
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hypothesis 5 on the Wichita Falls tornado). Comparison among hypotheses 4–8 per se
is facilitated by examining the relative posterior probabilities of each hypothesis, that
is, the posterior predictive of each hypothesis relative to the total probability of the
hypothesis set. Relative probabilities (expressed as fraction of total probability mass)
are shown for hypotheses 4–8 in Table 4. As the table makes clear, the two leading
contenders across all seven EMONs are hypothesis 5 (control via indirect contacts
without a brokerage effect) and hypothesis 7 (control via direct contacts with a
brokerage effect). Rankings are generally consistent across networks, with hypoth-
esis 7 being more likely to hold for both rank measures in EMONs 1, 3, and 6, and
hypothesis 5 more likely to hold in EMONs 4, 5, and 7 (EMON 2 shows a reversal
between command and decision rank scores, but this appears to be due to the fact
that both hypotheses are about equally likely to hold for this network). By contrast,
hypothesis 4 (control only via direct interaction) does not seem to be a viable
candidate (except perhaps in EMON 4, where it still falls behind H5). As such, we
can be reasonably confident that neither direct communication alone nor brokerage
ties are adequate to account for the exercise of control within the Drabek et al. data

Table 3. Marginal Posterior Predictives for Hypotheses 4–8

1 2 3 4 5 6 7

Command rank
Hypothesis 4 (direct only) 0.15 0.28 0.34 0.46 0.16 0.06 0.22
Hypothesis 5 (indirect/direct only) 0.18 0.41 0.36 0.50 0.41 0.12 0.45
Hypothesis 6 (brokerage only) 0.06 0.05 0.03 0.00 0.02 0.07 0.02
Hypothesis 7 (brokerage/direct only) 0.39 0.44 0.48 0.46 0.21 0.22 0.23
Hypothesis 8 (all mechanisms) 0.01 0.01 0.01 0.01 0.02 0.01 0.00

Decision rank
Hypothesis 4 (direct only) 0.15 0.26 0.32 0.45 0.14 0.21 0.19
Hypothesis 5 (indirect/direct only) 0.18 0.39 0.35 0.49 0.36 0.27 0.52
Hypothesis 6 (brokerage only) 0.07 0.04 0.02 0.00 0.01 0.05 0.01
Hypothesis 7 (brokerage/direct only) 0.34 0.33 0.48 0.47 0.22 0.45 0.15
Hypothesis 8 (all mechanisms) 0.00 0.01 0.01 0.01 0.03 0.06 0.00

The values of each cell in the table report the marginalized probability that the respective hypothesis holds
in each of the seven disasters.

Table 4. Relative Posterior Predictives for Hypotheses 4–8 (All Alternatives Excluded)

1 2 3 4 5 6 7

Command rank
Hypothesis 4 (direct only) 0.19 0.24 0.28 0.32 0.19 0.13 0.24
Hypothesis 5 (indirect/direct only) 0.22 0.34 0.30 0.35 0.50 0.25 0.49
Hypothesis 6 (brokerage only) 0.08 0.04 0.02 0.00 0.02 0.15 0.02
Hypothesis 7 (brokerage/direct only) 0.49 0.37 0.39 0.32 0.26 0.46 0.25
Hypothesis 8 (all mechanisms) 0.01 0.01 0.01 0.00 0.02 0.02 0.00

Decision rank
Hypothesis 4 (direct only) 0.21 0.25 0.27 0.31 0.18 0.20 0.22
Hypothesis 5 (indirect/direct only) 0.24 0.38 0.29 0.34 0.47 0.26 0.59
Hypothesis 6 (brokerage only) 0.09 0.04 0.02 0.00 0.02 0.04 0.01
Hypothesis 7 (brokerage/direct only) 0.45 0.32 0.40 0.33 0.28 0.43 0.17
Hypothesis 8 (all mechanisms) 0.01 0.01 0.01 0.01 0.04 0.06 0.00
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set, on the one hand, and on the other, that the triple combination of direct, indirect,
and brokered contact is not necessary to explain the patterns that are observed. We
note that, as discussed earlier, a combination of structures are correlated with the
control measures. Either indirect contact or brokerage is critical along with direct
influences, but the evidence cannot differentiate which of the two is more critical.

It is useful to recontexualize these findings in terms of the original data and at
the level of the organization, rather than at the level of network. We draw from
the largest disaster in our data set, the Mt. St. Helens eruption, as a setting for our
example. The organization with the greatest command rank and decision-making
rank in that emergent disaster response network was the Cowlitz County Sheriff’s
Department (both scores equal 40). Consistent with our results, this organization did
not have the most direct ties to other organizations (or highest degree) but was
indeed situated structurally in indirect contact with many organizations (with high
eigenvector centrality). This case highlights the principal theoretical contribution of
our study. The Cowlitz County Sheriff’s department was thus clearly in control of
the disaster response not through its direct contact with all other organizations but
because it could reach others through short paths in the communication network.

Discussion

Our data and hypotheses address how networks are structured, managed, and
governed to accomplish the difficult task of emergency response. These are tasks for
which networks are especially well-suited, although there are contingencies that
arise, which prevent cooperation from all relevant actors to accomplish short- and
long-term recovery goals. The task of establishing control in an emergent network of
organizations remains one of the critical challenges for responsible parties involved
in the response (Moynihan, 2009; Quarantelli, 1988). In particular, our findings
expose the structural mechanisms implicated in what Provan and Kenis (2007)
referred to as “modes of network governance” as they related to this problem by
testing hypotheses about the relationship between three types of network centrality
(degree, brokerage, eigenvector) and two measures of authority relations (command
and decision-making ranks). Our results are consonant with the theory that network
governance more effectively arises through sparse local structures such as indirect
communication or a combination of direct and brokered communication—or a
“midrange” model of governance between a few leading organizations and a full
network administrative organization (Provan & Kenis, 2007, p. 234). Furthermore,
that we can take a comparative perspective on this issue makes a major contribution
to the study of organizational networks and informs policy across a range of possible
crisis scenarios.

While our findings regarding the possible mechanisms underlying control exer-
cise in emergent networks speak to a long-standing theoretical concern within the
sociology of organizations, they also have practical implications for public policy. In
particular, the issue of command and control has been central to a number of
contemporary critiques of emergency management practices motivated by experi-
ence with recent large-scale disasters like Hurricane Katrina (Neal & Webb, 2006). It
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has been argued that the current bureaucratic, centralized model of command and
control doctrine is ill-equipped to handle such large-scale catastrophes and is, more-
over, ineffective in facilitating interorganizational communication (Britton, 1991;
Drabek & McEntire, 2003; Neal & Phillips, 1995). Specifically relevant for command
and control, Waugh (1994, p. 254) refers to the centralized response system as “an
ill-chosen strategy that overlooks the ‘emergent’ quality of much of the typical
disaster response.”

Waugh (1994), along with others, noted that centralized authority restricts flex-
ibility, decision making, and mutual aid. Carley and Harrald (1997) suggested that
experience will enable flexible organizations to outperform their centralized or
hierarchical counterparts by adapting faster through individual learning. Certainly,
effective decision making is enhanced by the ability to draw on previous experience,
have access to available information, and manage one’s own events, all things that are
more easily achieved when interacting directly with other organizations (Carley,
2002; Flin, 1996; Klein, 1993; Weick & Roberts, 1996). Our results suggest, however,
that direct interaction alone is not the critical element in driving control within
emergent interorganizational networks. Rather, we find that realized control patterns
are, in fact, compatible with “action at a distance” (in the sense of influence over
nonadjacent organizations) and with control, which is contingent upon nondyadic
properties such as brokerage roles. While our findings are not in disagreement with
calls for more flexible, decentralized control systems, accordingly, they do suggest
that a focus on direct interaction among organizations as either a necessary or a
sufficient means of attaining this objective is potentially problematic.

Our results are also consistent with the notion that overly centralized authority
structure is too risky, and indeed impractical, during disaster responses. If these
actors cannot arrive at the scene quick enough, or if communication channels are
disrupted, we have shown that the formal control structure, which is typically
top-down and direct, is replaced by an ad hoc structure that relies more on perco-
lation through the network to facilitate authority relations. As information and
communication technology advances, however, central command should consider
adopting these systems into their control strategies (Burkhardt & Brass, 1990). One
policy recommendation from our results, then, is to focus on diffuse strategies that
exploit connections between actors who have few ties to those with many ties. While
focused on information broadcasts rather than the dissemination of authority rela-
tions, Sutton, Palen, and Schlovski (2008) showed that the so-called “back-channel”
communication structure (peer-to-peer networks, Facebook, Twitter) that is outside
the typical Incident Command System may offer support to disaster managers.
Despite the fact that there is still risk of disruption to these systems—they typically
exploit the same structural mechanisms to relay information over a personal network
as we find at play in the delegation of control during disaster responses and should
be deployed as part of disaster managers’ communication infrastructure. Disaster
managers have typically been skeptical of the efficacy of these systems and their
potential to foster rumoring and false information, but policy aimed at training
managers in the proper use of this technology will help to alleviate those concerns.
We recommend adoption of these systems to help maintain the formal control
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relations mandated by response plans and to assist in the emergence of ad hoc control
relations when formal structures break down (Burkhardt & Brass, 1990).

Our findings generalize to emergent networks in other situations where organi-
zations must collaborate during periods of uncertainty, such as in mergers and
economic crises (Fendt, 2005). Research reflecting upon the process by which control
relations is resolved during organizational uncertainty point to “optimal mixing”
(March, 1991) and “balancing” (Bradach, 1997) of authority positions rather than a
sole actor issuing directives (De Witt & Meyer, 1999). The results presented here
inform this line of work that indeed, direct interaction alone is not sufficient for
generating control relations but that more collaborative network structure involving
both direct and indirect relationships is warranted.

Conclusion

Decision-making structures, whether seen in terms of “authority,” “command,”
or “control,” are integral features of social relations within modern organizations
(Coleman, 1990; Weber, 1958). In conventional settings, decision-making structures
are often “frozen” into predetermined and well-defined forms. However, in the
context of disrupted settings such as disasters, organizations are faced with chal-
lenges that can undermine both the ability to exercise control over others and the
normative acceptance of such control. Where organizations must work together in
response to such disruptions, new “ad hoc” control structures often emerge in
tandem with other facets of the multiorganizational network. Here, we have utilized
data on communication and control among organizations to uncover some of the
structural mechanisms which are—and are not—implicated in this process.

While direct interaction would seem to be the most natural basis for control
exercise, our data do not support the contention that this alone can explain control
within multiorganizational response networks. Rather, we find that direct inter-
action mediated by brokerage roles, or indirect interaction alone, provides a better
accounting of which organizations actually exercise control within the networks
studied here. This finding is consonant with recent work by Tsai (2002) and Ghoshal,
Korine, and Szulanski (1994), which challenged the long-held assertion that central-
ization is key to coordinating across interdependencies in organizational networks
(Egelhoff, 1982). On the other hand, we do not find evidence that favors brokerage
alone or a joint combination of brokerage and indirect interaction; thus, the data
employed here seem to suggest that one or the other of these factors is critical
within any given setting. Although current data do not allow further discrimination
between these alternatives, it does nevertheless substantially narrow the range
of plausible theories to be winnowed by further research. One possible direction
for future work is to study the evolution of the process through time. For instance,
do authority relations change as the communication network moves from more
central to more brokered structures as Provan and Kenis’s (2007) propositions
about network governance predicted? Our results certainly suggest that—at least
within the emergent network context—neither highly central nor highly brokered,
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communication structures are implicated in the network governance process as
stand-alone mechanisms of control.

Finally, many policy network studies collect data under uncertain circumstances
or are otherwise exposed to sources of error—such as in the disaster response
scenarios studied here and in the emerging economies scenarios studied by Lee et al.
(this issue). The methods we employed here (and detailed in the Appendix) offer a
very general framework for policy researchers to use in handling error-prone data.
As Robins et al. (this issue) point out, the ERGM framework for missing edge data is
still under development; our approach offers both an alternative and a complemen-
tary solution to this problem.
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Public Health.
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Notes

1. All of the data used here can be reproduced from Drabek et al. (1981) and are conveniently bundled
with Butts, Handcock, and Hunter (2008) network package for the R Statistical Computing System.

2. The weighting procedure is described in detail in Drabek et al. (1981). The ranks were reverse-
weighted, summed, divided by the number of organizations minus 1, and multiplied by 10. Thus, in a

case with 20 organizations, the maximum score would be 10
19 6

19
60∗ × =∑ ( )

.

3. Posterior simulation was performed using the bbnam function of the sna package for R (Butts, 2008).

4. Note that the column values here need not sum to 1 since the hypothesis set does not contain all
possible alternatives (as explained in the Hypotheses section) and since the operationalization used
here allows a single draw to support multiple hypotheses in some cases. This is in contrast with Table 4
in which the columns do sum to 1, within rounding, because all alternatives were excluded.
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Appendix

Network Inference Model

Although Bayesian analysis is in increasing use throughout the social sciences
(see, e.g., Gill [2007] for an introductory treatment with numerous applications),
some readers may be unfamiliar with its application to the problem of network
inference (i.e., inferring the structure of a social or other network from incomplete
and/or error-prone data). With this in mind, we, here, provide additional technical
detail on the procedure employed in generating the joint posterior communication
networks for our study. Our focus here is on our specific case; we refer readers to
section 2.3 of Butts (2003) for more general background on the Bayesian network
inference model. Additionally, we refer readers to Gamerman (1997) and Gelman
et al. (1995) for accessible introductions to Markov chain Monte Carlo (MCMC)
simulation and Bayesian inference more generally. Our notation follows that of Butts
(2003).

For our analysis of the seven Drabek et al. emergent multiorganizational
network networks, we used Butts’s (2003) Bayesian network inference model for
pooled error probabilities. Such a model is appropriate when integrating multiple
reports of unknown accuracy, as is the case with our data, and when the number of
independent reports from each informant is insufficient to support reliable estima-
tion on a per-source basis. Under this model, the accuracy of reports regarding each
communication network is governed by a pair of false negative and false positive
error probabilities. These error rate parameters are uncertain, and (jointly with the
networks themselves) are estimated from the data.

Prior Distributions. To employ this model, we must specify two prior distributions for
each network: the joint prior distribution of the error parameters and the joint prior
distribution of the network itself. Our prior distribution on each communication
network, as explained in the text, is obtained by fixing the expected mean degree (i.e.,
expected number of ties per organization) and taking all edges as a priori independent
and identically distributed. This is equivalent to a homogeneous Bernoulli graph prior, a
simple, weakly informative prior that can be expressed as follows. For a communica-
tion network on N organizations, let Q be the true adjacency matrix; that is, Q is an
N ¥ N matrix such that Qij = 1 if the ith organization communicates with the jth
organization, with Qij = 0 otherwise (since communication is in this case reciprocal,
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Q is symmetric; diagonal entries are ignored). Obviously, we do not know the true
state of Q and thus treat it as a random variable with probability mass function:

p
i

N

j i

N

ij ij( | ) ( )( )Θ Θ Θφ φ φ= + − −[ ]
= = +

∏∏
1 1

1 1 (1)

where j is a hyperparameter expressing the a priori probability of a tie between two
organizations. For mean degree d, this corresponds to φ = −d N( )1 . Here, we choose
d = 6 based on prior work on similar networks by Lind et al. (2008), leading to the j
values shown in Table A1. Note that the use of this prior specification does not imply
that the expected number of ties per organization in Q is actually equal to d; rather,
this serves as an initial “guess,” with the final estimate depending primarily on the
observed data. Likewise, the use of a Bernoulli graph prior (in which edges are
independent) does not imply that all edges in the underlying network are in fact
independent, but only that we do not force any particular dependence assumptions
on the network on an a priori basis. Dependency between edges (e.g., transitive
closure bias; Holland & Leinhardt, 1972) can still arise from the data.

In addition to the network priors, we must specify priors for the error rate
parameters, e+ and e-. The e+ parameter for any given network expresses the prob-
ability that an informant might err by falsely indicating communication between two
organizations that do not, in fact, communicate. Likewise, the e- parameter indicates
the probability that an informant might err by falsely indicating that two organiza-
tions do not communicate when, in fact, they do. Since we obviously do not know
these probabilities, we treat them as random variables. As before, we employ weakly
informative independent priors based on findings from previous research; specifi-
cally, we model e+ and e- separately for each network, with independent beta priors
for each parameter. Thus, for a given network, we have

p e e e e( , )+ − + + + − − −= ( | , ) ( | , )Beta Betaα β α β (2)

where a +, b + and a -, b - are the respective hyperparameters for e+ and e-. Here, we
choose hyperpriors a + = 4, b + = 20 and a - = 4, b - = 12 based on previous work by
Butts (2003). The resulting prior distributions are shown in Figure 5. As can be seen,
both allow for the possibility that error rates could range quite widely, although rates
greatly in excess of 0.5 are seen as a priori unlikely. Prior means for both distributions
are shown with dotted lines: that for e- is slightly higher, reflecting the observation
that false negatives (errors of omission) are typically more common than false posi-
tives (errors of commission). As with the network priors, it should be stressed that

Table A1. Network Prior Hyperparameters (j), by Network

Network

1 2 3 4 5 6 7

j 0.461 0.300 0.316 0.500 0.231 0.250 0.316
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these distributions should be interpreted as initial expectations based on first prin-
ciples and past research—actually estimated error rates are based primarily on the
observed data.

Posterior Simulation. For each communication network in the Drabek et al. (1981)
data set, our observations can be summarized by an N ¥ N ¥ N data array Y, such that
Yijk = 1 if the informant for organization i reports the presence of a communication tie
between organizations j and k. Since reports were collected only for informants’
organizations’ own ties, only cells of the form Yiij and Yjij are used here; others are
ignored. Following Butts (2003), the likelihood of Y is given by

p Y e e p Y e e p Y e e
i

N

j i

N

iij ij jij ij( | , , ) = ( | , , ) ( | , ,
=1 = 1

Θ Θ Θ+ −

+

+ − + −∏∏ )), (3)

where Q, e+, and e- are as given earlier, and where

p Y e e Y e Y e Y eijk jk jk ijk ijk jk ijk( | , , ) = 1 1 1Θ Θ Θ+ − − − +−( ) + −( )[ ] + −( ) ++ −( ) −( )[ ]+1 1Y eijk (4)

is the likelihood of a single edge report. It follows from Bayes’ theorem that the joint
posterior of Q and the error parameters given Y has the form
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Figure 5. Prior Densities for Error Parameters (with Prior Means).
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Although this expression is too complex to be treated analytically, we may easily
examine the posterior properties of Q (the communication structure) via posterior
simulation (Gelman et al., 1995). Specifically, we use the algorithm described later to
take multiple draws from the marginal posterior distribution of Q (or, alternately, the
error parameters), using these to conduct our analyses. See Gelman et al. (1995),
Gamerman (1997), or Gill (2007) for extensive treatments of this approach.

Gibbs Sampler Algorithm. Butts (2003) provided an iterative algorithm for simulating
draws from the joint posterior. This algorithm (known as a Gibbs sampler) proceeds
as follows:

1. procedure Draw Q, e+, e-|Y

2. Draw Q(1) from p(Q|j)

3. Draw e+(1) from p(e+|a+, b+)

4. Draw e-(1) from p(e-|a-, b-)

5. i: = 2

6. repeat

7. Draw Q(i) from p(Q|e+(i-1), e-(i-1), Y, j)

8. Draw e+(i) from p(e+|Q(i), e-(i-1), Y, a+, b+)

9. Draw e-(i) from p(e-|Q(i), e+(i), Y, a-, b-)

10. i: = i + 1

11. until Q(·), e+(·), e-(·) ~ Q, e+, e-|Y

12. return Q(·), e+(·), e-(·)

This procedure makes use of the full conditional distributions of Q, e+, and e-,
which are derived in the previous reference.

Given a series of draws from the algorithm, we then use q(·), e+(·), e-(·) to generate
posterior network quantities (degree, eigenvector centrality, and Gould–Fernandez
raw brokerage) and conduct our marginal and robust regression analyses. As
noted in note 3 of this article, simulation for this study was performed using the
bbnam() function of the sna package for R (Butts, 2008) in the statnet software suite
(Handcock, Hunter, Butts, Goodreau, & Morris, 2003); likewise, the data are pack-
aged with the network package for R (Butts et al., 2008) and can be called within the
R environment using data (emon).
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